Monografias.com > Sin categoría
Descargar Imprimir Comentar Ver trabajos relacionados

Sistemas sensoriales en elasmobranquios (página 2)



Partes: 1, 2

Conclusiones

La combinación de los diferentes tipos de
sentidos y la agudeza de los mismos les ha permitido a los
elasmobranquios adaptarse perfectamente a la vida en el mar. La
ecología sensorial de estos organismos es muy compleja, y
dependiendo de la especie y las condiciones del ambiente pueden
utilizar uno o varios sentidos para monitorear el ambiente,
detectar a sus presas y congéneres o ubicarse
espacialmente.

Muchos de los sistemas presentes en los mal llamados
"animales superiores", tuvieron origen hace cuatrocientos
millones de años con la aparición del primer
condrictio y durante este tiempo han permanecido casi inmutables;
la mayoría de sentidos, órganos y estructuras
relacionadas con los sentidos en los elasmobranquios son muy
similares a las presentes en otros grupos taxonómicos, por
lo que pueden ser puntos de comparación para establecer la
filogenia de múltiples especies, o para comprender el
funcionamiento básico de éstos sistemas en otros
organismos incluidos los humanos.

El rango al que cada unidad sensorial opera depende de
la especialidad del órgano responsable, la sensibilidad
del sistema, las características del estímulo y las
condiciones físicas del ambiente en que desarrolle la
precepción. La orientación y el comportamiento de
estos animales puede ser influenciada por estímulos
comunes a su historia de vida, algunos de los cuales pueden ser
reproducidos en condiciones controladas y de laboratorio, y en
algunas ocasiones por estímulos sintéticos e
introducidos por el hombre dentro del hábitat de estos
animales.

Aunque los elasmobranquios fueron objeto de muchos
estudios, la mayoría se desarrollaron hasta comienzos del
siglo pasado y eran principalmente de índole descriptiva;
en la época de mayor avance en la ciencia estos organismos
fueron reemplazados por animales que presentaban ventajas
económicas, facilidades de manejo, obtención y
mantenimiento por parte de los investigadores por lo que son muy
pocos los estudios de fondo realizados en estos
animales.

Los avances en materia de investigación,
conservación y bioética que existen en la
actualidad nos abren las puertas para retomar la
investigación en este grupo taxonómico, estudios
que nos permitirán entender nuestro propio funcionamiento,
nos ayudarán en la comprensión y posiblemente la
cura de enfermedades humanas, y más importante aún,
nos darán luces para el cuidado y protección de
estos organismos encargados de mantener el delicado equilibrio en
nuestro planeta.

Bibliografía

Andres, K. H. 1970. Anatomy and ultrastructure of the
olfactory bulb in fish, amphibia, reptiles, birds and mammals, in
Taste and Smell in Vertebrates. G.E.W. Wolstenhome and J. Knight,
Eds., Ciba Foundation Symposium/J. and A. Churchill, London,
177-196.

Aronson, L.R. 1963. The central nervous system of sharks
and bony fishes with special reference to sensory and integrative
mechanisms, in Sharks and Survival. P.W. Gilbert, Ed., D.C.
Heath, Boston, 165-241.

Barry, M.A. 1987. Afferent and efferent connections of
the primary octaval nuclei in the clearnose skate, Raja
eglanteria. J. Comp. Neurol. 266:457-477.

Barry, M.A. and M.V.L. Bennett. 1989. Specialized
lateral line receptor systems in elasmobranchs: the spiracular
organs and vesicles of Savi, in The Mechanosensory Lateral Line:
Neurobiology and Evolution. S. Coombs, P. Görner, and H.
Münz, Eds., Springer-Verlag, New York, 591-606.

Barry, M.A., D.H. Hall, and M.V.L. Bennett. 1988a. The
elasmobranch spiracular organ I. Morphological studies. J. Comp.
Physiol. A 163:85-92.

Barry, M.A., D.H. Hall, and M.V.L. Bennett. 1988b. The
elasmobranch spiracular organ II. Physiological studies. J. Comp.
Physiol. A 163:93-98.

Bennett, M.V.L. 1971. Electroreception, in Fish
Physiology. Vol. 5. W.S. Hoar and D.J. Randall, Eds., Academic
Press, New York, 493-574.

Bleckmann, H. and T.H. Bullock. 1989. Central nervous
physiology of the lateral line, with special reference to
cartilaginous fishes, in The Mechanosensory Lateral Line:
Neurobiology and Evolution. S. Coombs, P. Görner, and H.
Münz, Eds., Springer-Verlag, New York, 387-408.

Bleckmann, H., O. Weiss, and T.H. Bullock. 1989.
Physiology of lateral line mechanoreceptive regions in the
elasmobranch brain. J. Comp. Physiol. A 164:459-474.

Bleckmann, H., T.H. Bullock, and J.M. Jorgensen. 1987.
The lateral line mechanoreceptive mesencephalic, diencephalic,
and telencephalic regions in the thornback ray, Platyrhinoidis
triseriata (Elasmobranchii). J. Comp. Physiol. A
161:67-84.

Blonder, B.I. and W.S. Alevizon. 1988. Prey
discrimination and electroreception in the stingray Dasyatis
sabina. Copeia 1988:33-36.

Bodznick, D. 1991. Elasmobranch vision: multimodal
integration in the brain. J. Exp. Zool. Suppl.
5:108-116.

Bodznick, D. and A.W. Schmidt. 1984. Somatotopy within
the medullary electrosensory nucleus of the skate, Raja erinacea.
J. Comp. Neurol. 225:581-590.

Bodznick, D. and R.G. Northcutt. 1980. Segregation of
electro- and mechanoreceptive inputs to the elasmobranch medulla.
Brain Res. 195:313-321.

Bodznick, D. and R.G. Northcutt. 1984. An electrosensory
area in the telencephalon of the little skate, Raja erinacea.
Brain Res. 298:117-124.

Bodznick, D. and R.L. Boord. 1986. Electroreception in
Chondrichthyes, in Electroreception. T.H. Bullock and W.
Heiligenberg, Eds., John Wiley & Sons, New York,
225-256.

Boord, R.L. and C.B.G. Campbell. 1977. Structural and
functional organization of the lateral line system of sharks. Am.
Zool. 17:431-441.

Boord, R.L. and J.C. Montgomery. 1989. Central
mechanosensory lateral line centers and pathways among the
elasmobranchs, in The Mechanosensory Lateral Line: Neurobiology
and Evolution. S. Coombs, P. Görner, and H. Münz, Eds.,
Springer-Verlag, New York, 323-340.

Boord, R.L. and R.G. Northcutt. 1982. Ascending lateral
line pathways to the midbrain of the clearnose skate, Raja
eglanteria. J. Comp. Neurol. 207:274-282.

Broun, G.R., O.B. Il"inskii, and B.V. Krylov. 1979.
Responses of the ampullae of Lorenzini in a uniform electric
field. Neurophysiology 11:118-124.

Brown, B.R. 2003. Sensing temperature with ion channels.
Nature 421:495.

Budker, P. 1958. Les organes sensoriels cutanes des
selaciens, in Traité de Zoologie. Vol. 15, Library de
l"Academie de Medicine. Masson et Cie, Paris,
1033-1062.

Bullock, T.H. 1979. Processing of ampullary input in the
brain: comparisons of sensitivity and evoked responses among
siluroids and elasmobranchs. J. Physiol. (Paris)
75:315-317.

Chu, Y.T. and M.C. Wen. 1979. A study of the
lateral-line canal system and that of Lorenzini ampullae and
tubules of elasmobranchiate fishes of China. Monograph of Fishes
of China. Academic Press, Shanghai.

Coombs, S. and J.C. Montgomery. 1999. The enigmatic
lateral line system, in Comparative Hearing: Fish and Amphibians.
R.R. Fay and A.N. Popper, Eds., Springer-Verlag, New York,
319-362.

Corwin, J.T. and R.G. Northcutt. 1982. Auditory centers
in the elasmobranch brain stem: deoxyglucose autoradiography and
evoked potential recording. Brain Res. 236:261-273.

Daniel, J.F. 1928. The Elasmobranch Fishes. University
of California Press, Berkeley.

Denton, E.J. and J.A.B. Gray. 1983. Mechanical factors
in the excitation of clupeid lateral lines. Proc. R. Soc. Lond. B
218:1-26.

Denton, E.J. and J.A.B. Gray. 1988. Mechanical factors
in the excitation of the lateral lines of fishes, in Sensory
Biology of Aquatic Animals. J. Atema, R.R. Fay, A.N. Popper, and
W.N. Tavolga, Eds., Springer-Verlag, New York,
595-617.

Denton, E.J. and J.A.C. Nicol. 1964. The chorioidal
tapeta of some cartilaginous fishes (Chondrichthyes). J. Mar.
Biol. Assoc. U.K. 44:219-258.

Dijkgraaf, S. and A.J. Kalmijn. 1962. Verhaltensversuche
zur Funktion der Lorenzinischen Ampullen. Naturwissenschaften
49:400.

Dotterweich, H. 1932. Bau und Funktion der
Lorenzinischen Ampullen. Zool. Jahrb. Abt. 3.
50:347-418.

Dowling, J.E. and H. Ripps. 1991. On the duplex nature
of the skate retina. J. Exp. Zool. Suppl. 5:55-65.

Doyle, J. 1963. The acid mucopolysaccharides in the
glands of Lorenzini of elasmobranch fish. Biochem. J.
88:7.

Dryer, L. and P.P.C. Graziadei. 1993. A pilot study on
morphological compartmentalization and heterogeneity in the
elasmobranch olfactory bulb. Anat. Embryol. 188:41-51.

Dryer, L. and P.P.C. Graziadei. 1994. Mitral cell
dendrites: a comparative approach. Anat. Embryol.
189:91-106.

Dryer, L. and P.P.C. Graziadei. 1996. Synaptology of the
olfactory bulb of an elasmobranch fish, Sphyrna tiburo. Anat.
Embryol. 193:101-114.

Ewart, J.C. and H.C. Mitchell. 1892. On the lateral
sense organs of elasmobranchs. II. The sensory canals of the
common skate (Raja batis). Trans. R. Soc. Edinb. 37:
87-105.

Fiebig, E. 1988. Connections of the corpus cerebelli in
the thornback guitarfish, Platyrhinoidis triseriata
(Elasmobranchii): a study with WGA-HRP and extracellular granule
cell recording. J. Comp. Neurol. 268:567-583.

Franceschini, V. and F. Ciani. 1993. Lectin binding to
the olfactory system in a shark, Scyliorhinus canicula. Fol.
Histochem. Cytobiol. 31:133-137.

Fraser, P.J. and R.L. Shelmerdine. 2002. Dogfish hair
cells sense hydrostatic pressure. Nature 415:495-496.

Gilbert, P.W. 1963. The visual apparatus of sharks, in
Sharks and Survival. P.W. Gilbert, Ed., D.C. Heath,
Boston, 283-326.

Graeber, R.C. and S.O.E. Ebbesson. 1972. Retinal
projections in the lemon shark (Negaprion brevirostris). Brain
Behav. Evol. 5:461-477.

Gruber, S.H. and J.L. Cohen. 1978. Visual system of the
elasmobranchs: state of the art 1960-1975, in Sensory Biology of
Sharks, Skates, and Rays. E.S. Hodgson and R.F. Mathewson, Eds.,
U.S. Office of Naval Research, Arlington, VA, 11-105.

Gruber, S.H., D.I. Hamasaki, and C.D.B. Bridges. 1963.
Cones in the retina of the lemon shark (Negaprion brevirostris).
Vision Res. 3:397-399.

Harris, A.J. 1965. Eye movements of the dogfish
Squalus acanthias L. J. Exp. Biol.
43:107-130.

Hassan, E.S. 1989. Hydrodynamic imaging of the
surroundings by the lateral line of the blind cave fish,
Anoptichthys jordani, in The Mechanosensory Lateral Line:
Neurobiology and Evolution. S. Coombs, P. Görner, and H.
Münz, Eds., Springer-Verlag, New York, 217-227.

Hensel, H. 1955. Quantitative Beziehungen zwischen
Temperaturreiz und Aktionspotentialen der Lorenzinischen
Ampullen. Z. Vergl. Physiol. 37:509-526.

Herrick, C.J. 1924. Neurological Foundations of Animal
Behavior. Henry Holt and Company; reprint edition 1965 by Hafner,
New York.

Heupel, M.R., C.A. Simpfendorfer, and R.E. Hueter. 2003.
Running before the storm: sharks respond to falling barometric
pressure associated with Tropical Storm Gabrielle. J. Fish Biol.
63:1357-1363.

Hodgson, E.S. and R.F. Mathewson. 1978b.
Electrophysiological studies of chemoreception in elasmobranchs,
in Sensory Biology of Sharks, Skates, and Rays. E.S. Hodgson and
R.F. Mathewson, Eds., U.S. Office of Naval Research, Arlington,
VA, 227-267.

Howes, G.B. 1883. The presence of a tympanum in the
genus Raja. J. Anat. Physiol. 17:188-191.

Hueter, R.E. 1991. Adaptations for spatial vision in
sharks. J. Exp. Zool. Suppl. 5:130-141.

Johnson, R.H. and D.R. Nelson. 1978. Copulation and
possible olfaction-mediated pair formation in two species of
carcharhinid sharks. Copeia 1978:539-542.

Johnson, S.E. 1917. Structure and development of the
sense organs of the lateral canal system of selachians (Mustelus
canis and Squalus acanthias). J. Comp. Neurol.
28:1-74.

Kalmijn, A.J. 1971. The electric sense of sharks and
rays. J. Exp. Biol. 55:371-383.

Kalmijn, A.J. 1974. The detection of electric fields
from inanimate and animate sources other than electric organs, in
Handbook of Sensory Physiology. Vol. 3. A. Fessard, Ed.,
Springer, Berlin, 147-200.

Kalmijn, A.J. 1981. Biophysics of geomagnetic field
detection. IEEE Trans. Magn. MAG-17:1113-1124.

Kalmijn, A.J. 1982. Electric and magnetic field
detection in elasmobranch fishes. Science 218:916-918.

Kalmijn, A.J. 1984. Theory of electromagnetic
orientation: a further analysis, in Comparative Physiology
ofnSensory Systems. L. Bolis, R.D. Keynes, and S.H.P. Madrell,
Eds., Cambridge University Press, Cambridge, U.K.,
525-560.

Kalmijn, A.J. 1988b. Detection of weak electric fields,
in Sensory Biology of Aquatic Animals. J. Atema, R.R. Fay, A.N.
Popper, and W.N. Tavolga, Eds., Springer-Verlag, New York,
151-186.

Kalmijn, A.J. 1989. Functional evolution of lateral line
and inner ear sensory systems, in The Mechanosensory Lateral
Line: Neurobiology and Evolution. S. Coombs, P. Görner, and
H. Münz, Eds., Springer-Verlag, New York,
187-215.

Kalmijn, A.J. 2000. Detection and processing of
electromagnetic and near-field acoustic signals in elasmobranch
fishes. Philos. Trans. R. Soc. Lond. 355:1135-1141.

Kantner, M., W.F. Konig, and W. Reinbach. 1962. Bau und
Innervation der Lorenzinischen Ampullen und deren Bedeutung als
niederes Sinnesorgan. Z. Zellforsch. 57:124-135.

Koester, D.M. 1983. Central projections of the
octavolateralis nerves of the clearnose skate, Raja eglanteria.
J. Comp. Neurol. 221:199-215.

Kroese, A.B. and N.A.M. Schellart. 1992. Velocity- and
acceleration-sensitive units in the trunk lateral line of the
trout. J. Neurophysiol. 68:2212-2221.

Loewenstein, W.R. and N. Ishiko. 1962. Sodium chloride
sensitivity and electrochemical effects in a Lorenzinian ampulla.
Nature 194:292-294.

Long, D.J., K.D. Hanni, P. Pyle, J. Roletto, R.E. Jones,
and R. Bandar. 1996. White shark predation on four pinniped
species in central California waters: geographic and temporal
patterns inferred from wounded carcasses, in Great White Sharks:
The Biology of Carcharodon carcharias. A.P. Klimley and D.G.
Ainley, Eds., Academic Press, San Diego, 263-274.

Lorenzini, S. 1678. Osservazioni intorno alle Torpedini,
Vol. 1. Florence. 136 pp.

Maisey, J.G. 2001. Remarks on the inner ear of
elasmobranchs and its interpretation from skeletal labyrinth
morphology. J. Morphol. 250:236-264.

Maruska, K.P. 2001. Morphology of the mechanosensory
lateral line system in elasmobranch fishes: ecological and
behavioral considerations. Environ. Biol. Fishes
60:47-75.

Maruska, K.P. and T.C. Tricas. 1998. Morphology of the
mechanosensory lateral line system in the Atlantic stingray,
Dasyatis sabina: the mechanotactile hypothesis. J. Morphol.
238:1-22.

Montgomery, J.C. 1984. Frequency response
characteristics of primary and secondary neurons in the
electrosensory system of the thornback ray. Comp. Biochem.
Physiol. 79A:189-195.

Montgomery, J.C., S. Coombs, and M. Halstead. 1995.
Biology of the mechanosensory lateral line in fishes. Rev. Fish
Biol. Fish. 5:399-416.

Münz, H. 1989. Functional organization of the
lateral line periphery, in The Mechanosensory Lateral Line:
Neurobiology and Evolution. S. Coombs, P. Görner, and H.
Münz, Eds., Springer-Verlag, New York, 285-297.

Murphy, C.J. and H.C. Howland. 1991. The functional
significance of crescent-shaped pupils and multiple pupillary
apertures. J. Exp. Zool. Suppl. 5:22-28.

Murray, R.W. 1960b. Electrical sensitivity of the
ampullae of Lorenzini. Nature 187:957.

Murray, R.W. and T.W. Potts. 1961. The composition of
the endolymph and other fluids of elasmobranchs. Comp. Biochem.
Physiol. 2:65-75.

New, J.G. 1990. Medullary electrosensory processing in
the little skate. I. Response characteristics of neurons in the
dorsal octavolateralis nucleus. J. Comp. Physiol.
167A:285-294.

Nickel, E. and S. Fuchs. 1974. Organization and
ultrastructure of mechanoreceptors (Savi vesicles) in the
elasmobranch Torpedo. J. Neurocytol. 3:161-177.

Norris, H.W. 1929. The distribution and innervation of
the ampullae of Lorenzini of the dogfish, Squalus acanthias: some
comparisons with conditions in other plagiostomes and corrections
of prevalent errors. J. Comp. Neurol. 47:449-465.

Norris, H.W. 1932. The laterosensory system of Torpedo
marmorata, innervation and morphology. J. Comp. Neurol.
56:169-178.

Norris, H.W. and S.P. Hughes. 1920. The cranial,
occipital, and anterior spinal nerves of the dogfish, Squalus
acanthias. J. Comp. Neurol. 31:293-402.

Northcutt, R.G. 1978. Brain organization in the
cartilaginous fishes, in Sensory Biology of Sharks, Skates, and
Rays. E.S. Hodgson and R.F. Mathewson, Eds., U.S. Office of Naval
Research, Arlington, VA, 117-193.

Northcutt, R.G. 1979. Retinofugal pathways in fetal and
adult spiny dogfish, Squalus acanthias. Brain Res.
162:219-230.

Northcutt, R.G. 1989. The phylogenetic distribution and
innervation of craniate mechanoreceptive lateral lines, in The
Mechanosensory Lateral Line: Neurobiology and Evolution. S.
Coombs, P. Görner, and H. Münz, Eds., Springer-Verlag,
New York, 17-78.

Northcutt, R.G. 1991. Visual pathways in elasmobranchs:
organization and phylogenetic implications. J. Exp. Zool. Suppl.
5:97-107.

Pals, N., P. Valentijn, and D. Verwey. 1982b.
Orientation reactions of the dogfish, Scyliorhinus canicula, to
local electric fields. Neth. J. Zool. 32:495-512.

Parker, G.H. 1909. The influence of eyes and ears and
other allied sense organs on the movement of Mustelus canis.
Bull. U.S. Bureau Fisheries 29:43-58.

Parker, G.H. 1914. The directive influence of the sense
of smell in the dogfish. Bull. U.S. Bur. Fisheries
33:61-68.

Parker, G.H. and R.E. Sheldon. 1913. The sense of smell
in fishes. Bull. U.S. Bur. Fisheries 32:33-46.

Paulin, M.G. 1995. Electroreception and the compass
sense of sharks. J. Theor. Biol. 174:325-339.

Peach, M.B. and N.J. Marshall. 2000. The pit organs of
elasmobranchs: a review. Philos. Trans. R. Soc. Lond. B
355:1131-1134.

Platt, C.J., T.H. Bullock, G. Czéh, N.
Kova?cevic, D.J. Konjevi´c, and M. Gojkovi´c. 1974.
Comparison of electroreceptor, mechanoreceptor, and optic evoked
potentials in the brain of some rays and sharks. J. Comp.
Physiol. 95:323-355.

Puzdrowski, R.L. and R.B. Leonard. 1993. The
octavolateral systems in the stingray, Dasyatis sabina. I.
Primary projections of the octaval and lateral line nerves. J.
Comp. Neurol. 332:21-37.

Rasmussen, L.E.L. and M.J. Schmidt. 1992. Are sharks
chemically aware of crocodiles? in Chemical Signals in
Vertebrates, Vol. IV. R.L. Doty and D. Müller-Schwarze,
Eds., Plenum Press, New York, 335-342.

Reese, T.S. and W.M. Brightman. 1970. Olfactory surface
and central olfactory connections in some vertebrates, in Taste
and Smell in Vertebrates. G.E.W. Wolstenhome and J. Knight, Eds.,
Ciba Foundation Symposium/J. and A. Churchill, London,
115-149.

Retzius, G. 1881. Das Gehörorgan der Wirbelthiere,
Vol. 1. Samson and Wallin, Stockholm.

Roberts, B.L. 1978. Mechanoreceptors and the behavior of
elasmobranch fishes with special reference to the
acoustico-lateralis system, in Sensory Biology of Sharks, Skates,
and Rays. E.S. Hodgson and R.F. Mathewson, Eds., U.S. Office of
Naval Research, Arlington, VA, 331-390.

Sand, A. 1938. The function of the ampullae of
Lorenzini, with some observations on the effect of temperature on
sensory rhythms. Proc. R. Soc. B 125:524-553.

Savi, P. 1844. Etudes anatomiques sur le systeme nerveux
et sur l"organe electrique de la Torpille, in Traité des
Phenomenes Electrophysiologiques des Animaux. C. Matteucci, Ed.,
Chez L. Mechelsen, Paris, 272-348.

Schweitzer, J. and D.A. Lowe. 1984. Mesencephalic and
diencephalic cobalt-lysine injections in an elasmobranch:
evidence for two parallel electrosensory pathways. Neurosci.
Lett. 44:317-322.

Sejnowski, T.J. and M.L. Yodlowski. 1982. A freeze
fracture study of the skate electroreceptors. J. Neurocytol.
11:897-912.

Sheldon, R.E. 1909. The reactions of the dogfish to
chemical stimuli. J. Comp. Neurol. 19:273-311.

Sheldon, R.E. 1911. The sense of smell in selachians. J.
Exp. Zool. 10:51-62.

Sillman, A.J., G.A. Letsinger, S. Patel, E.R. Loew, and
A.P. Klimley. 1996. Visual pigments and photoreceptors in two
species of shark, Triakis semifasciata and Mustelus henlei. J.
Exp. Zool. 276:1-10.

Sisneros, J.A. and T.C. Tricas. 2000. Androgen-induced
changes in the response dynamics of ampullary electrosensory
primary afferent neurons. J. Neurosci. 20:8586-8595.

Sisneros, J.A., T.C. Tricas, and C.A. Luer. 1998.
Response properties and biological function of the skate
electrosensory system during ontogeny. J. Comp. Physiol.
183A:87-99.

Smeets, W.J.A.J. 1998. Cartilaginous fishes, in The
Central Nervous System of Vertebrates, Vol. 1. R. Nieuwenhuys,
H.J. ten Donkelaar, and C. Nicholson, Eds., Springer, Berlin,
551-654.

Stell, W.K. and P. Witkovsky. 1973. Retinal structure in
the smooth dogfish, Mustelus canis: light microscopy of
photoreceptor and horizontal cells. J. Comp. Neurol.
148:33-46.

Stenonis, N. 1664. De musculis et glandulis
observationum specimen cum duabus epistolis quarum una ad guil.
Pisonum de anatome Rajae etc. Amstelodami.

Strong, W.R., Jr., R.C. Murphy, B.D. Bruce, and D.R.
Nelson. 1992. Movements and associated observations of
bait-attracted white sharks, Carcharodon carcharias: a
preliminary report. Aust. J. Mar. Freshwater Res.
43:13-20.

Takami, S., C.A. Luer, and P.P.C. Graziadei. 1994.
Microscopic structure of the olfactory organ of the clearnose
skate, Raja eglanteria. Anat. Embryol. 190:211-230.

Tester, A.L. 1963a. Olfaction, gustation, and the common
chemical sense in sharks, in Sharks and Survival. P.W Gilbert,
Ed., D.C. Heath, Boston, 255-282.

Tester, A.L. 1963b. The role of olfaction in shark
predation. Pac. Sci. 17:145-170.

Tester, A.L. and G.J. Nelson. 1969. Free neuromasts (pit
organs) in sharks, in Sharks, Skates, and Rays. P.W. Gilbert,
R.F. Mathewson, and D.P. Rall, Eds., Johns Hopkins University
Press, Baltimore, 503-531.

Tester, A.L. and J.I. Kendall. 1969. Morphology of the
lateralis canal system in the shark genus Carcharhinus. Pac. Sci.
23:1-16.

Tester, A.L., J.I. Kendall, and W.B. Milisen. 1972.
Morphology of the ear of the shark genus Carcharhinus, with
particular reference to the macula neglecta. Pac. Sci.
26:264-274.

Theisen, B., E. Zeiske, and H. Breucker. 1986.
Functional morphology of the olfactory organs in the spiny
dogfish (Squalus acanthias L.) and the small-spotted catshark
(Scyliorhinus canicula L.). Acta Zool. (Stockholm)
67:73-86.

Tong, S.L. and T.H. Bullock. 1982. The sensory functions
of the cerebellum of the thornback ray, Platyrhinoidis
triseriata. J. Comp. Physiol. 148A:399-410.

Tricas, T.C. 1982. Bioelectric-mediated predation by
swell sharks, Cephaloscyllium ventriosum. Copeia
1982:948-952.

Tricas, T.C. 2001. The neuroecology of the elasmobranch
electrosensory world: why peripheral morphology shapes behavior.
Environ. Biol. Fishes 60:77-92.

Tricas, T.C. and J.E. McCosker. 1984. Predatory behavior
of the white shark (Carcharodon carcharias), with notes on its
biology. Proc. Calif. Acad. Sci. 43:221-238.

Tricas, T.C., S.W. Michael, and J.A. Sisneros. 1995.
Electrosensory optimization to conspecific phasic signals for
mating. Neurosci. Lett. 202:29-131.

Waltman, B. 1966. Electrical properties and fine
structure of the ampullary canals of Lorenzini. Acta Physiol.
Scand. 66(Suppl. 264):1-60.

Zeiske, E., B. Theisen, and S.H. Gruber. 1987.
Functional morphology of the olfactory organ of two carcharhinid
shark species. Can. J. Zool. 65:2406-2412.

Zeiske, E., J. Caprio, and S.H. Gruber. 1986.
Morphological and electrophysiological studies on the olfactory
organ of the lemon shark, Negaprion brevirostris (Poey), in
Indo-Pacific Fish Biology: Proceedings of the Second
International Conference on Indo-Pacific Fishes. T. Uyeno, R.
Arai, T. Taniuchi, and K. Matsuura, Eds., Ichthyological Society
of Japan, Tokyo, 381-391.

Zigman, S. 1991. Comparative biochemistry and biophysics
of elasmobranch lenses. J. Exp. Zool. Suppl. 5:29-40.

 

 

Autor:

Diego Fernando Beltrán
Villalobos

Partes: 1, 2
 Página anterior Volver al principio del trabajoPágina siguiente 

Nota al lector: es posible que esta página no contenga todos los componentes del trabajo original (pies de página, avanzadas formulas matemáticas, esquemas o tablas complejas, etc.). Recuerde que para ver el trabajo en su versión original completa, puede descargarlo desde el menú superior.

Todos los documentos disponibles en este sitio expresan los puntos de vista de sus respectivos autores y no de Monografias.com. El objetivo de Monografias.com es poner el conocimiento a disposición de toda su comunidad. Queda bajo la responsabilidad de cada lector el eventual uso que se le de a esta información. Asimismo, es obligatoria la cita del autor del contenido y de Monografias.com como fuentes de información.

Categorias
Newsletter